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FAULT DETECTION & DIAGNOSIS USING NEURAL NETWORK
APPROACHES

Prof. Mark A. Kramer

ABSTRACT

Neural networks can be used to detect and identify abnormalities real-time process data.

Two basic approaches can be used, the first based on training networks using data representing
both normal and abnormal modes of process behavior, and the second based on statistical
characterization of the normal mode only. Given data representative of process faults, radial
basis function networks can effectively identify failures. This approach is often limited by the
lack of fault data, but can be facilitated by process simulation. The second approach employs

elliptical and radial basis function neural networks and other models to learn the statistical
distributions of process observables under normal conditions. Analytical models of failure
modes can then applied in combination with the neural network models to identify faults.
Special methods can be applied to compensate for sensor failures, to produce real-time
estimation of missing or failed sensors based on the correlations codified in the neural network.
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How to use neural networks to:

1) detect
2) ide n tify
3) rectify

faults in processes and associated sensors.

Using neural nets involves learning from
examples.

Two approaches:

1) Learning with examples of normal and
abnormal behavior

2) Learning with examples of normal
behavior only

Useful in the absence of a functional theory
of device behavior.
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REVIEW OF NEURAL NETWORKS,

Artifical neural networks are loosely based on how
the brain carries out its low-level computations.

• Simple computational elements acting in parallel

° Neurons "fire" when excited by other neurons

• Capable of learning and responding differently to
different input patterns

"nodes"

"connections"

inputs

Input/output behavior determined by:
• Topology of network
• Computation of each neuron
• Adjustable parameters of connections and nodes

Two of the most important types of networks are:
• backpropagation networks (BPNs),
• radial basis function networks (RBFNs)
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ninComputatio Backpropagation Networks

• Layered architecture, usually input layer, output layer, plus
one intermediate "hidden" layer

• Connections between nodes are weighted. Weights
multiply the signal on the connection.

• Each node sums its inputs and then passes the result
through a sigmoidal nonlinearity

wl

w2

w3
f(')

Typcial sigmoid function: f(u) = 1/(l+exp(-u))

1

neuron "off" _

0

- neuron "on
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Computation in Radial Basis Function Networks

• Similar to BPN but uses Gaussian nonlinearity in nodes

• Input/hidden layer connections not weighted, simply
pass input vector X to hidden layer

hidden layer

out/_put layer

i X layer Y1

nput

Y2

unwei
weighted

connections _ connections

Gaussian
units

Each Gaussian unit has internal parameters

a "unit center" m and a "receptive width" c

representing

Output of Gaussian unit i,

between inputs x and the

ai, is based on the distance
unit center rn:
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Graphical interpretation of hidden nodes of RBFN:

One input dimension:

Y data

f__+ / functional fit
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NEURAL NETWORK LEARNING

Takes place through an
connection weights W.

optimization of internal

A set of examples of desired
(x, ,_)i, i=1 ,...K is required.

input/output behavior

A least-squares fit is sought:
K

minw2, [Yi - Net(xi)] 2
i=1

TRAINING PHASE w = w(x,Y_)

INPUT VECTOR X
DESIRED OUTPUT

VECTOR Y(X)

APPLICATION PHASE
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Multi-Class Diagnosis Using Neural Networks

sensor 2

Fault 2
operation

Fault 1
operation

sensor 3

sensor 1

Normal
operation

Neural network is capable of identifying
more complex class regions than "high-
low-normal"-style rules

s nsor 
sensorsensor 3

"- Fault 1
Fault 2

--- Normal

NEURAL NETWORK
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Network Training For Multiclass Diagnosis

observables x diagnosis y_

{ 0.032, 0.099, -0.039} _ fault 1 --> { 1, 0, 0}
{0.016,-0.53,-0.465} ---> fault 2 ---> [0, 1, 0}
[ 0.466, 0.022, -0.405 } --> fault 3 ---> {O, O, 1 }

Example inputs x:
Feedstock characterization: {sp. grav., bubble pt., visc.,..}
Sensor data: {meas 1, meas 2, ....}
Time series: {meas(t), meas(t-l), meas(t-2), ...}

Using least squares objective function, assuming:

1) Sufficient # of training examples
2) Examples in proportion to prior probabilities
3) Adequate network representational capacity

Then:

P(fault i I x) relative
= = probability

Yi _ P(fault Jl x) of fault i

Z Yi _ 1 implies an invalid classification

mk1438
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RADIAL BASIS FUNCTION NETWORKS ARE

BETTER FOR DIAGNOSTIC PROBLEMS THAN

BACKPROPAGATION (SlGMOIDAL) NETS
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Fault diagnosis example problem
(see Kramer & Leonard, IEEE Control Systems 11, 31, April 1991)

3 classes, 2 input dimensions
30 training examples of each class.
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Xl

1-1 C 1 (Normal)
C 2 (Fault 1)

[] C3 (Fault 2)
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Backpropagation networks (sigmoidai nodes):

• Class regions divided with hyperplanes

• Tends to place class boundaries near "edge" of class

indicates some regions of

data (sufficient but not necessary)

Check sum T_.,Yi _=1

insufficient training
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[] C 1 (Normal)

41_ C 2 (Fault 1)

• C3 (Fault 2)

Xl
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0.9 < T_,Yi < 1.1



Radial Basis Function Networks (Gaussian nodes):

• Well-placed classification boundaries

• Check sum T_.,Yi = 1 tends to be satisfied everywhere

(i.e. no regions flagged as novel)
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mk1442



03

02

02

03

DECISION REGIONS



Closer look at novelty in RBFNs:

Radial units are centered among groups of data
by k-means clustering.

Gaussian activation functions a(x) decrease to 0
as one moves away from unit center

/

/

/ \

, ai

Novelty can be indicated by max(ai) < cutoff value

(e.g. 0.5)

• Works even better with elliptical units
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Hidden node
activation > 0.5



Elliptical Basis Function Networks (EBFN)

• Similar to RBFN but unit shapes can be
elliptical

• Shapes determined by local covariance
structure of data

• Good novelty detection and
properties

classification

\

\

-m

Elliptical Basis Function Coverage of
Fault Classification Data
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Data Density Estimation using RBFNs

In each radial or elliptical unit, local
approximately:

data density is

# data points local to unit h

Volume of unit h • total # data points

A smooth data density estimate at every point in
space then given by the interpolation formula:

p(x)=

H
_, ah(X)Ph

h=l
H

1 -max(ah) + T__,ah(X)
h=l

Uses of probability density function:

1) Class-based decomposition of classifier

2) Fault detection using only normal data

3) Rectification of sensor faults
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Class-Based Network Decomposition

pi(x) = P(xl Hi)

Density related to posterior fault probability
conditional on data via Bayes' Theorem:

P(Hi I x) = P(x] Hi) P(Hi) / P(x)

P(x) is pooled density function (all classes).

Relative probability, eliminate P(x):

Rik = P(xl Hi) P(Hi) / P(x] Hk) P(H k)

Class-decomposed network:

X1

Fault 1
net P(_X_.I

X2 Fault 2net

X n

Fault m
net

P(XI

fault 1)

fautt 2)

fault m)

Bayesian
decision
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0
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1
S
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Decomposition benefits:

° No regression of weights

Work savings = O(HM/N)
H = # hidden nodes
M = # faults
N = # inputs

° Allows incremental development of classifier,
easy incorporation of new data

• Prior probabilities and misclassification costs
can be incorporated in Bayesian decision
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FAULT DETECTION USING DENSITY FUNCTION

Fault detection: is current state in the normal class,
or out?

Fault data not needed.

• Model probability density function of normal class
° Place probability limits, e.g. 95% for declaring fault
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Rectif, ication of
probability

sensor faults by
optimizatio ,n

raw sensor
readings

Rectification

estimated states

sensor errors

• Assume model of normal probability
• Hypothesize sensor failures only

distribution

X2

O
O

O O
0 0

0
0

oC0o

• recorded sensor value, y

' 6, adjustment = y-

o rectified state, _
O0

0
0

0o
0

0 0

"'- normal data distribution

r Xl

maximize

X

P(;_IY) o_p(8)p()_)

/
likelihood of
adjustment

likelihood of
rectified state
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Example: Plate temperature rectification in distillation
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objective



Test: Corrupt each of 5 sensors in test set of 100,
yielding 500 examples with single sensor failure.

Rectificadon for Temperature 1
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Summary & Conclusions:

Diagnosis can be approached by:

• Multi-class training
• Single-class training

Multi-class diagnosis
probabilities

yields relative fault

•Radial basis
approach to

function networks preferred
multi-class diagnosis

Single-class training involves extraction of
statistical distribution model

Can be approach using radial basis functions

Useful for:

• Decomposing multi-class problems
• Fault detection
• Rectification of sensor data
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